Volume 3, Issue 5, October 2014, Page: 122-131
Gutenberg-Richter Law Parameters Analysis Using the Hellenic Unified Seismic Network Data Through FastBee Technique
Popandopoulos G. A., Earthquake Planning and Protection Organization (EPPO), Seismotect. Div., Xanthou 32, 15451 Athens, Greece; Schmidt Institute of Physics of the Earth, Russian Academy of Sciences, ul. Bol’shaya Gruzinskaya 10, Moscow, 123995 Russia
Chatziioannou E., Visiting fellow at EPPO, Seismotect. Div., Xanthou32, 15451 Athens Athens, Greece
Received: Nov. 27, 2014;       Accepted: Dec. 5, 2014;       Published: Dec. 16, 2014
DOI: 10.11648/j.earth.20140305.12      View  2924      Downloads  174
Abstract
The mapping of the minimum completeness magnitude Mc and parameters (a- and b-value) of the Guttenberg-Richter (G-R) law was studied for Greece territory and adjacent areas by using the new earthquakes catalog produced by the Hellenic Unified Seismological Network (HUSN). For the calculation of the parameters a- and b-values the visual method of the completeness magnitude (Mc) definition was used by means of FastBee technique. The results show that with the commissioning of the new network HUSN, the Mc have significantly decreased and have achieved the value M=1.5 in the central part of Greece and practically up to M=2.0 for the entire territory. Despite the short time of observation (11.2011-05.2014) the statistical reliable pattern of the spatial distribution of the G-R law parameters for territory of Greece was derived. In generally the spatial distributions of a- and b-value reflect the known seismotectonic structures of Greece. The distribution of the relatively low b-value coincides with the tectonic compression field which acts along the Hellenic Trench. The relatively low b-value is also observed on the northern-eastern part of Greece. The relatively high values of b-value meet mainly in the central Greece, where the extensional stress field dominates. The spatial pattern of the parameter a-value is reflecting the seismic activity of the under study region. The results of detailed analysis of b-value distribution with depth in the Corinthian Gulf area show that its values significantly decreased (from 1.6 to 0.76) in depth interval from 1 up to 17 km and then gradually increased up to 30 km. The pattern of b-value in depth distribution in this region was interpreted in the frame of hypothesis about the brittle-ductile transition zone existence. On the basis of this result, it is supposed that detailed study of the b-value distribution versus depth can be used for assessment of the focal depths of the impending strong earthquake. The present results show the applicability and the efficiency of the FastBEE technique for three dimension mapping of Mc and the G-R parameters.
Keywords
Completeness Magnitude Mc, The Guttenberg-Richter Law, Seismological Network, Spatial Analysis, B-Value vs Depth
To cite this article
Popandopoulos G. A., Chatziioannou E., Gutenberg-Richter Law Parameters Analysis Using the Hellenic Unified Seismic Network Data Through FastBee Technique, Earth Sciences. Vol. 3, No. 5, 2014, pp. 122-131. doi: 10.11648/j.earth.20140305.12
Reference
[1]
Abercrombie, R.E. & Brune J.N., Evidence for a constant b-value above magnitude 0 in the southern San Andreas, San Jacinto, and San Miguel fault zones and at the Long Valley caldera , California,Geophys. Res. Lett. vol. 21 (15), pp.1647-1650, 1994.
[2]
Abercrombie R.E., 1995, Earthquake source scaling relationships from -1 to 5 ML using seismograms recorded at 2.5-km depth , Journ. Geophys. Res., Vol.100. pp. 24014-24036, 1995.
[3]
Aki, K., Maximum likelihood estimate of b in the formula log N = a - b M and its confidence limits, Bull. Earthq. Res. Inst., vol. 43, pp.237-239, 1965.
[4]
Cao, A. M., & S. S. Gao, S. S., Temporal variations of seismic b-values beneath north eastern Japan island arc, Geophys. Res. Lett., V. 29. NO 9. doi:10.1029/2001GL013775, 2002,
[5]
Chouliaras, G., Investigation the earthquake catalog of the National Observatory of Athens, Nat. Hazards Earth Syst., 9, pp.905-912, 2009.
[6]
D'Alessandro, A., Papanastassiou, D., and Baskoutas, I., Hellenic Unified Seismological Network: an evaluation of its performance through SNES method, Geophys J. Int., 185, pp.1417-1430, 2011.
[7]
Deshcherevskii, A. V., & Sidorin, A. Ya. Changes in representativity of the earthquake catalogue for Greece in time and space, Seism. Instrum. 48, 2012, pp.292–302, 2012.
[8]
Doglionia, C., Barbab, S., Carminatia, E., & Riguzzib, F., Role of the brittle–ductile transition on fault activation, Physics of the Earth and Planetary Interiors. Vol.184, Issue 3-4, pp.160-171, 2010.
[9]
Daub, E. G., Shelly, D. R., Guyer, R. A., & P. A. Johnson. P. A., Brittle and ductile friction and the physics of tectonic tremor, Geophys. Res. Let.. V. 38, 2011, L10301, doi:10.1029/2011GL046866, 2011.
[10]
Dragoni, M., The brittle-ductile transition in tectonic boundary zones, Annali Geofisica. Vol, XXXVI, N. 2, pp.37-44, 1993.
[11]
Gutenberg B. & Richter, Ch. F., Frequency of earthquakes in California, Bull. Seismol. Soc. Am., 34, pp.185-188, 1944.
[12]
Gomberg J. Seismicity and detection location threshold in the southern Great Basin seismic network, Journ. Geophys. Res., N96, pp.401-414, 1991.
[13]
Hatzidimitriou, P. M., Papadimitriou, E.E., Mountrakis, D. M., &. Papazachos, B. C., 1985. The seismic parameter b of the frequency magnitude relation and its association with the geological zones in the area of Greece , Tectonophysics. N120, pp.141-151, 1985.
[14]
Ishimoto, M., & Lida, K., Observations of earthquakes regis¬tered with the microseismograph constructed recently, Bull. Earthq. Res. Inst. N17, pp.443-478, 1939.
[15]
Kijko, A., & Sellevoll, M.A., Estimation of Earthquake Hazard Parameters from Incomplete Data Files .2. Incorporation of Magnitude Heterogeneity, Bull. Seism. Soc. Amer. 82 (1), pp.120-134, 1992.
[16]
Lukk, A. A., & Popandopoulos, G.A., Reliability of Determining the Parameters of Gutenberg–Richter Distribution for Weak Earthquakes in Garm, Tajikistan, Izvestiya, Physics of the Solid Earth, Vol. 48, N. 9–10, pp.698–720, 2012.
[17]
Makropoulos, K., & Burton, P.W., Greek tectonics and seismicity. Tectonophysics, N 106, pp.235-304, 1998.
[18]
Marzocchi, W. & Sandri, L. A., Review and new insights on the estimation of the b-value and its uncertainty, Ann. Geophys. N46, pp.1271-1282, 2003.
[19]
Mignan, A., & Woessner, J., Estimating the magnitude of completeness for earthquake catalog , Community Online Resource for Statistical Seismicity Analysis, 2012, doi:10.5078/crossa-00180805. Available at http://www.corssa.org.
[20]
Mignan, A., & Chouliaras, G., Fifty Years of Seismic Network Performance in Greece (1964–2013): Spatiotemporal Evolution of the Completeness Magnitude, Seismological Research Letters, doi: 10.1785/0220130209, 85(3), pp.657-667, 2014.
[21]
Mogi, K., Magnitude-Frequency Relation for Elastic Shocks Accompanying Fractures of Various Materials and some Related Problems in Earthquakes, Bull. Earthq. Res. Inst., 40, pp.831-853, 1962.
[22]
Papadopoulos (Popandopoulos), G. A., & Baskoutas I. New tool for the temporal variation analysis of seismic parameters, Nat. Hazards Earth Syst. N9, pp.859-864, 2009. (www.nat-hazards-earth-syst-sci.net/9/859/2009\
[23]
Papanastassiou, D., Detection-location capability of the Hellenic Unified Seismological Network (HUSN) operating by the Institute of Geodynamics, National Observatory of Athens, Hellenic J.Geosci, N45, pp.209–216, 2011
[24]
Papazachos, B. C., Seismicity of the Aegean and surrounding area // Tectonophysics, N178, pp.287-308, 1990.
[25]
Papazachos, B. C., Large seismic faults in the Hellenic arc, Annali di geofisica. 1996, XXXIX, 5, pp.891-903, 1996.
[26]
Papazachos, B., & Papazachou, K., The Earthquakes of Greece. Ziti editions, Thessaloniki. 1997. P.304 (in Greek).
[27]
Papazachos C., An Alternative Method for a Reliable Estimation of Seismicity with an Application in Greece and the Surrounding Area, BSSA. Vol. 89, N1, pp.111-119., 1999.
[28]
Popandopoulos, G. A., & Baskoutas, I., Regularities in the Time Variations of Seismic Parameters and Their Implications for Prediction of Strong Earthquakes in Greece, Izvestiya, Physics of the Solid Earth, 47(11), pp.974–994, 2011.
[29]
Popandopoulos, G. A. & Lukk, A. A., The depth variation in the b-value of Frequency-Magnitude Distribution of the earthquakes in the Garm Region of Tajikistan, Izvestiya, Physics of the Solid Earth, 50(2), pp.273-288, 2014.
[30]
Popandopoulos, G..A. Hypocenter location of local earthquakes at the Garm test area, in Zemletryasenia i protsessy ikh podgotovki (Earthquakes and The Processes of Their Preparation), Mascow: Nauka. pp. 5-23, 1991.
[31]
Rydelek, P.A. & Sacks, I. S., Testing the completeness of earthquake catalogs and the hypothesis of self-similarity, Nature, 337, pp.251-253, 1989.
[32]
Sandri L. & Marzocchi, W., A technical note on the bias in the estimation of the b-value and its uncertainty through the Least Squares technique, Ann. Geophys, 50(3), pp.329-339, 2007.
[33]
Schorlemmer, D., Wiemer, S. & Wyss, M.Variations in earthquake-size distribution across different stress regimes, Nature Lett. 437, pp.539-542, 2005 doi:10.1038/nature04094.
[34]
Scholz, C.H., The Frequency-Magnitude Relation of Microfracturing in Rock and its Relation to Earthquakes, Bull. Seism. Soc. Am., N5, pp.399-415, 1968.
[35]
Shi Y. & Bolt. B. A., The standard error of the Magnitude-frequency b value, Bull. Seism. Soc. Am. Vol. 72, pp.1677-1687, 1982.
[36]
Smirnov. V. B., Earthquake Catalogs: Evaluation of Data Completeness, Volcanol. Seismol. N19, pp.497–510, 1998.
[37]
Utsu, T., A statistical significance test of the difference in b value between two earthquake groups, J. Phys. Earth., N14, pp.37–40. 1966.
[38]
Utsu, T., Introduction to seismicity, Surijishingaku (Mathematical Seismology), Inst. Statis. Math. 34(VII), pp.139–157. 1992. (in Japanese).
[39]
Wiemer S. & Benoit. J., 1996. Mapping the b-value anomaly at 100 km depth in the Alaska and New Zealand subduction zones, Geoph. Res. Letts., N23. pp.1557-1560. 1996.
[40]
Wiemer S., & Wyss, M., Mapping the frequency-magnitude distribution in asperities: An improved technique to calculate recurrence times? // Journ. Geophys. Res. N102. pp.15-128, 1997.
[41]
Wiemer S., McNutt S. R. & M. Wyss, M., Temporal and three-dimensional spatial analysis of the frequency-magnitude distribution near Long-Valley caldera California, Geophys. J. Int., N134, pp.409-421, 1998.
[42]
[41] Wiemer, S., & Wyss, M., Minimum magnitude of complete reporting in earthquake catalogs: examples from Alaska, the western United States, and Japan, Bull. Seismol. Soc. Am. vol. 90, pp.859-869, 2000.
[43]
Wiemer, S., A software package to analyze seismicity: ZMAP, Seismol. Res. Lett., N72, pp.373-382, 2001.
[44]
Wiemer, S., & Wyss, M., Mapping spatial variability of the frequency-magnitude distribution of earthquakes, Adv. Geophys., N45, 2002, pp.259–302, 2002.
[45]
Wiemer, S., & Wyss. M., Reply to “Comment on ‘Minimum magnitude of completeness in earthquake catalogs: examples from Alaska, the Western United States and Japan’ by Stefan Wiemer and Max Wyss”, Bull. Seism. Soc. Am., vol. 93, pp.1868–1871, 2003.
[46]
Woessner, J., & Wiemer, S., Assessing the quality of earthquake catalogues: Estimating the magnitude of completeness and its uncertainty, Bull. Seismol. Soc. Am. Vol. 95, 2005, pp.684-698. 2005.
[47]
Wyss, M., Towards a physical understanding of the earthquake frequency distribution, Gephys. J.R. astr. Soc., N31, pp.341-359, 1973.
[48]
Wyss, M., Pachiani, F., Deschamps, A., & Patau. G., Mean magnitude variations of earthquakes as a function of depth: Different crustal stress distribution depending on tectonic setting, Geoph. Res. Let. 35, 2008, L01307, doi; 10.1029/200GL031057.
[49]
Zavyalov, A.D., Srednesrochnyi prognoz zemletryasenii: osnovy, metodika, realizatsiya (Intermediate-Term Earthquake Prediction: Theory, Methods, and Implementation), Moscow: Nauka. pp.1-253, 2006.(in Russia).
Browse journals by subject